Dose enhancement and cytotoxicity of gold nanoparticles in colon cancer cells when irradiated with kilo‐ and mega‐voltage radiation

نویسندگان

  • Herman Hau
  • Dipesh Khanal
  • Linda Rogers
  • Natalka Suchowerska
  • Rajiv Kumar
  • Srinivas Sridhar
  • David McKenzie
  • Wojciech Chrzanowski
چکیده

Despite major advances in the field of radiotherapy, healthy tissue damage continues to constrain the dose that can be prescribed in cancer therapy. Gold nanoparticles (GNPs) have been proposed as a solution to minimize radiation-associated toxicities by enhancing the radiation dose delivered locally to tumor cells. In the current study, we investigated the application of third-generation GNPs in two-dimensional (2D) and three-dimensional (3D) cell cultures and whether there is synergy between the nanoparticles and kilo- or mega-voltage radiation to cause augmented cytotoxicity. The 10-nm GNPs were found to be nontoxic in both 2D and 3D in vitro cultures of colon cancer cells at concentrations of up to 10-25 µg/ml. There was a significant increase in cell survival fraction reduction following exposure to 1 Gy of kilo-voltage (18.3%) and 2 Gy of mega-voltage (35.3%) radiation when the cells were incubated with 50 µg/ml of GNPs. The biocompatibility of the GNPs combined with their substantial synergy with radiation encourages further investigations into their application in targeted cancer treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gold nanoparticles as a radio-sensitizer of colon cancer cells at high megavoltage energies: An In-Vitro study

Introduction: In the point of physical view, there are no significant differences between tumor and normal tissues during radiation therapy. Radio-sensitizers have a key role to address the issue. Exploiting high atomic number, gold nanoparticles (GNPs) have been introduced as novel radio-sensitizers and have shown promising result in the field. Owing to high mass attenuation c...

متن کامل

The effect of gold nanoparticles on dose enhancement factor of human intestinal colon cancer HT-29 cells

Introduction: Radiation therapy is an important procedure for treatment of more than half of tumors. One way to increase the efficiency of radiation therapy is application of radiosensitizer at the site of tumor. gold nanoparticles (GNPs) have several characteristics that make them attractive for using with radiation therapy including small size (1–100 nm), biocompatibility, pr...

متن کامل

Dose enhancement effect of gold nanoparticles on MAGICA polymer gel in mega voltage radiation therapy

Background: Radiation-sensitive polymer gels are among the most promising three-dimensional dose verification tools and tissue-like developed to date. Among the special features of this type of dosimeters, is be doped with other elements or chemicals which made them appropriate for investigating of dose enhancement with contrast agents, by high atomic number. Material and Methods: In this study...

متن کامل

Enhancement of radio-sensitivity of colorectal cancer cells by gold nanoparticles at 18 MV energy

Objective(s): Taking advantage of high atomic number of gold nanoparticles (GNPs) in radiation dose absorbing, many in vitro and in vivo studies have been carried out on using them as radio-sensitizer. In spite of noticeable dose enhancement by GNPs at keV energies, using this energy range for radiotherapy of deep-seated tumors is outdated. The aim of the present work was to examine the effect ...

متن کامل

Investigating the synergistic effects of gold nanoparticles and electroporation in sensitization of human intestinal colon cancer HT-29 cells to 6MV photon beam

Introduction: Radiation therapy (RT) is the gold standard treatment for more than half of known tumors. There is increasing evidence that combining radiation therapy with a radiosensitizer can enhance the efficiency of this treatment modality. A radiosensitizer preferably enhances dose at the site of tumor and increases discrimination between tumor and normal surrounding tissue...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2016